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Alignment of the eigenvectors for strain-rate tensors and subgrid-scale (SGS) stress
tensors in large-eddy simulation (LES) is studied in homogeneous isotropic turbulence.
Non-alignment of these two eigenvectors was shown in Tao, Katz & Meneveau (2002).
In the present study, the specific term in the decomposition of the SGS stress tensor,
which is primarily responsible for causing this non-alignment, is identified using the
nonlinear model. The bimodal behaviour of the alignment configuration reported
in Tao et al. (2002) was eliminated by reordering the eigenvalues according to the
degree of alignment of the corresponding eigenvectors with the vorticity vector. The
preferred relative orientation of the eigenvectors was ≈ 42◦. The alignment trends
were conditionally sampled based on the relative dominance of strain and vorticity.
The effect of the identified term on the alignment was the largest in the region in
which the magnitudes of strain and vorticity were comparable and large (flat sheet).
The most probable alignment configuration in the flat-sheet region was different
from those in the strain-dominated and vorticity-dominated regions. The relative
orientation of the eigenvectors was dependent on the degree of resolution for the
flat sheet region yielded on the LES mesh. When the alignment was conditionally
sampled on the events with the backward scatter of the SGS energy into the grid
scale, the interchange of the alignment of the eigenvectors took place. Relevance of
the identified term for the generation of turbulence is investigated. It is shown that
the identified term makes no contribution to the production of the total SGS energy,
but contributes significantly to the generation of the SGS enstrophy. The identified
term causes a time-lag in the evolution of the turbulent energy and enstrophy. It is
shown that generation of vorticity is markedly attenuated when the magnitude of the
identified term is modified, and the original nonlinear model yielded the results which
are in the closest agreement with the direct numerical simulation data.

1. Introduction
Since turbulence consists of eddies with a very wide size range, when we consider

simulating the turbulence numerically, a vast number of degrees of freedom is required
to resolve up to the small eddies in which molecular dissipation of the turbulent energy
takes place. To reduce the number of degrees of freedom, the small scales should
be coarsely grained. One of the methods available for this reduction is large-eddy
simulation (LES). In LES, a coarse graining of the small scales is performed by
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applying a filtering operation to the raw variable f

f (x) =

∫
D

G(x − x ′′)f (x ′′) dx ′′, (1.1)

where f denotes the resolved or grid scale component, G(x) the filter function, D the
flow domain, and x = (x1, x2, x3). The velocity and pressure fields (f ) are decomposed
into the grid scale component (f ), and the subgrid-scale (SGS) component (f ′)
through this filtering procedure. The filtered Navier–Stokes equations are derived by
applying the filtering operation (1.1) to the Navier–Stokes equations as

∂ui

∂t
+

∂(uiuj )

∂xj

= −∂τij

∂xj

− ∂p

∂xi

+ ν
∂2ui

∂xk∂xk

, (1.2)

where ui (i =1, 2, 3) denotes the grid-scale velocity field, p denotes the grid-scale
pressure, and ν denotes the kinematic viscosity. The subgrid-scale (SGS) stress tensor,
τij = (uiuj − ui uj ), results from coarse graining of the SGS. For recent reviews of
LES, see, e.g. Piomelli (1999) and Meneveau & Katz (2000).

Approximation of the SGS stress tensor has been commonly carried out using the
eddy viscosity coefficient model, in which a complete alignment of the SGS stress
tensor with the grid-scale strain-rate tensor is assumed. A representative model is the
Smagorinsky model (Smagorinsky 1963):

τij � 2
3
EGδij − 2νeSij , (1.3)

where νe is the isotropic eddy viscosity coefficient,

νe = CS∆
2|S|, |S| = [2SijSij ]

1/2, Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

CS is a model constant, EG is the SGS energy (uiui − ui ui)/2, and ∆ is the
characteristic SGS length scale. Here, as well as in the following, the SGS stress
tensor, τij , was forced to be trace-free, and the deviatoric part (τij − δij τkk/3) is
denoted as τij for brevity.

Assessment of the eddy-viscosity model using the direct numerical simulation
(DNS) data, however, showed that its accuracy for approximation of the τij term
is generally low, i.e. the correlation coefficient, ρ, between the exact τij term and
the τij term modelled using the Smagorinsky model was typically ρ ≈ 0.2 (e.g.
Clark, Ferziger & Reynolds 1979). In fact, non-alignment of the eigenvectors for
the strain-rate and SGS stress tensors was shown in Tao, Katz & Meneveau (2000),
in which the three-dimensional velocity distributions measured using holographic
particle image velocimetry were used to assess the alignment. The most extensive
SGS stress eigenvector was shown to be preferentially aligned at ≈ 34◦ to the most
contracting strain-rate eigenvector. In Tao, Katz & Meneveau (2002), the experimental
data for more statistical samples were used, and the angle was ≈ 32◦. The observed
trend for alignment was confirmed in the DNS data for homogeneous isotropic
turbulence. It was also shown that the alignment angle is increased to ≈ 55◦ when
an intense backward scatter of the SGS energy into the grid scale takes place. In
addition, the alignment of the SGS stress eigenvector and the strain-rate eigenvector
showed a bimodal behaviour, one in which the most extensive stress eigenvector
is preferentially aligned with the extensive strain-rate eigenvector (denoted the
αβγ − αβγ configuration in Tao et al. 2002), and the other in which the most extensive
stress eigenvector is preferentially aligned with the intermediate strain-rate eigenvector
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(the αβγ − βαγ configuration). It was revealed that the primary element of the SGS
stress tensor which causes this non-alignment is the modified Leonard term in the
decomposition of the τij term.

An alternative SGS model is the scale-similarity model, in which the SGS primitive
variables (e.g. velocity components) are directly modelled using the synthetic velocities,
e.g. as (Bardina 1983)

τij � (uiuj − ui uj ), (1.4)

where the grid-scale velocities, ui , were used as the synthetic velocities. Different
definitions for the synthetic velocities have been considered (e.g. Domaradzki & Saiki
1997). This model yields a much higher correlation with the exact SGS stress tensor
than the SGS eddy viscosity model (e.g. Clark et al. 1979; Piomelli 1999). When the
SGS production term, P ,

P = −τijSij , (1.5)

was considered, however, the eddy viscosity model showed a much better performance
than that at the tensorial level of the SGS stress, τij , i.e. ρ was increased to typically
≈ 0.6 (e.g. Clark et al. 1979; Liu, Meneveau & Katz 1994; Piomelli 1999). In practice,
the SGS eddy viscosity model has been added to the scale-similarity model to yield
sufficient drain of the grid-scale energy into the SGS.

The lowest-order approximation of the scale-similarity model, equation (1.4), using
the Taylor expansion as the nonlinear model is

τij � ∆
2

12

∂ui

∂xk

∂uj

∂xk

, (1.6)

which exhibits a good performance for predicting the SGS stress (Clark et al. 1979;
Liu et al. 1994). In Tao et al. (2002), it was shown that the stress eigenvectors of
the nonlinear model are preferentially aligned in the same direction as those of the
measured stress eigenvectors. Stresses computed using the nonlinear model had a
bimodal behaviour, but the preferred angles were 42◦ instead of the measured 32◦.

The aim of the present study is to identify the specific term which is responsible for
causing the non-alignment, clarify the roles of this identified term for the generation
of turbulence, and demonstrate the limitations of the SGS eddy viscosity model.
In § 2, the configuration of alignment between the eigenvectors for the strain-rate
and the SGS stress tensors is discussed, and the results are compared with those
obtained in Tao et al. (2002). In § 3, the element in the decomposition of the SGS
stress tensor which is primarily responsible for causing the non-alignment of the two
eigenvectors is identified, and its influence on the SGS production term is examined.
The limitation of the SGS eddy viscosity model is discussed. Section 4 thoroughly
analyses the characteristics of the identified term. The impact of the identified term
for generation of the SGS turbulent energy and enstrophy is shown. Throughout §§ 2,
3 and 4, the analysis was carried out in an a priori manner (Piomelli 1999) using the
direct numerical simulation data for the homogeneous isotropic turbulence. Section 5
describes the elucidation of the role of the identified term in an a posteriori manner
by incorporating the SGS models into the actual LES of ABC flow. Dependence
of temporal evolution of turbulence statistics and structures on the modification of
the identified term is examined, and the relevance of the identified term is revealed.
Our conclusions are given in § 6. In the Appendix, the nonlinear models which were
considered in the present study are compared with those used in the previous studies.
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2. Determination of alignment configuration
In the present study, the Gaussian function

G(x) = G(x1, x2, x3) =

(√
6

π

1

∆

)3

exp

(−6
(
x2

1 + x2
2 + x2

3

)
∆

2

)
, (2.1)

was used as the filter function, G(x), in (1.1), where the characteristic filter width, ∆,
is chosen to be equal to 2∆ in the present study. ∆ is the grid interval for the LES
mesh.

We have used the direct numerical simulation (DNS) data for incompressible
decaying homogeneous isotropic turbulence, which was generated with 256, 256
and 256 grid points, respectively, in the x-, y- and z-directions. Periodic boundary
conditions were imposed in the three directions. The size of the computational domain
was 2π in each direction, the viscosity ν = 0.00014, and the time interval, ∆t , was
set equal to 0.0005. For details of the DNS data, see Horiuti (2001). Assessment was
performed using the data at the instant when the Reynolds number based on the
Taylor microscale, Rλ ≈ 87.6. The LES data were generated by applying the Gaussian
filter to the DNS data, and were truncated to 64 × 64 × 64 grid points in the x-, y-
and z-directions, respectively, unless otherwise stated. The Kolmogorov length, η, of
the DNS data was ≈ 0.0081, and kmaxη ≈ 1.03 (kmax is the maximum wavenumber).
When the DNS data were truncated to 643 grid points, ∆/η = 12.2(∆/η = 24.4).

The eigenvalues for the (grid-scale) strain-rate tensor, Sij , are denoted as σi (i =
1, 2, 3). In Tao et al. (2000, 2002), the descending ordering of these eigenvalues, such
that σ1 � σ2 � σ3, was used. The eigenvectors corresponding to the eigenvalues, σi ,
are denoted as ei (i = 1, 2, 3). The same ordering of the eigenvalues and of the
corresponding eigenvectors was used for other eigenvalues. The eigenvalues for the
SGS stress tensor, (−τij ), are denoted by (−τ )i (i = 1, 2, 3) and the eigenvectors
corresponding to those eigenvalues are denoted by (−τ )i (i = 1, 2, 3).

Figure 1 shows the joint probability density function (p.d.f.) of the alignment
between the stress eigenvector (−τ )1 and the strain-rate eigenvector e1, cosθ[(−τ )1 −
e1], and alignment between (−τ )2 and e2, ζ [(−τ )2 − eP

2 ]. In the present study, the
same notation for the angles, θ, ζ, φ, as that used in Tao et al. (2002) is used, that is,
θ[(−τ )3 − e3] denotes the angle between the eigenvectors (−τ )3 and e3, ζ [(−τ )2 − eP

2 ]
denotes the angle between (−τ )2 and the eigenvector eP

2 on the ((−τ )1, (−τ )2)-plane,
and eP

2 is the projection of e2 on this plane. φ[(−τ )P3 − e1] denotes the angle between
e1 and the eigenvector (−τ )P3 on the (e1, e2)-plane, and (−τ )P3 is the projection of
(−τ )3 on this plane. Figure 2 shows the sketch for definitions of these angles, θ, ζ

and φ. The joint p.d.f.s were computed by using 20 × 20 bins of equal width in
both directions. The bimodal behaviour of alignment between the strain-rate and
stress tensor eigenvectors which was pointed out in Tao et al. (2002) can be seen
in figure 1. The two peaks can be identified in figure 1. The first one is located at
cosθ[(−τ )1−e1] ≈ 0 (i.e. θ[(−τ )1−e1] ≈ π/2), and ζ [(−τ )2−eP

2 ] ≈ π/2. The second one
is located at cosθ[(−τ )1 − e1] ≈ 0.75 (i.e. θ [(−τ )1 − e1] ≈ 42◦), and ζ [(−τ )2 − eP

2 ] ≈ 0.
The first peak corresponds to the αβγ −βαγ configuration defined in Tao et al. (2002),
and the second peak to the αβγ − αβγ configuration. Another peak is discernible at
cosθ[(−τ )1 − e1] ≈ 1 (i.e. θ[(−τ )1 − e1] ≈ 0), and ζ [(−τ )2 − eP

2 ] ≈ 0. The alignment
configuration corresponding to this peak will be discussed in § 3.

In the present paper, only the results for two-dimensional joint p.d.f.s are shown.
Those for three-dimensional joint p.d.f.s were similar to those presented in Tao
et al. (2002) except for the amplitude of the alignment angle. The most probable
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Figure 1. Joint p.d.f. of the alignment between the eigenvector (−τ )1 and the strain-rate
eigenvector e1, cosθ [(−τ )1 − e1], and the alignment between (−τ )2 and e2, ζ [(−τ )2 − eP

2 ].

angle between the eigenvectors (−τ )1 and e1 obtained in the present study was ≈ 42◦

for the αβγ − αβγ configuration, and the most probable alignment between the
eigenvectors (−τ )2 and e1 was ≈ 42◦ for the αβγ − βαγ configuration. These angles
are larger than the angles reported in Tao et al. (2000) (34◦) and in Tao et al. (2002)
(32◦).

This difference in the alignment angle may be attributed to the difference in the
Reynolds number (Rλ = 87.6 in the present study and Rλ = 260 in Tao et al. (2002)),
the difference in the filter function (the Gaussian function in the present study and the
low-pass box filter function in Tao et al. (2002)), and the difference in the flow field
(the homogeneous isotropic turbulent flow in the present study and the flow in the
core region of a square duct in Tao et al. (2002), i.e. the presence of weak mean shear
in the duct flow). We note that the most probable angle between the eigenvectors (−τ )1
and e1 which was derived using the DNS data at Rλ = 93 shown in Tao et al. (2002)
appears to be cosθ[(−τ )1 − e1] ≈ 0.8 (i.e. θ[(−τ )1 − e1] ≈ 37◦), which is slightly larger
than the angle obtained using the experimental data. However, it was found that
this angle is also dependent on the truncation of the DNS data. When the DNS
data were truncated to 323 grid points (∆/η = 24.4, ∆/η = 48.8), the most probable
alignment between (−τ )3 and e3 was cosθ[(−τ )3 − e3] = 0.8 (i.e. θ[(−τ )3 − e3] ≈ 37◦)
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Figure 2. Perspective sketch for definition of angles θ, ζ, φ used for the p.d.f.s. The example is
shown for [(−τ )3 − e3] (angle between (−τ )3 and e3), and ζ [(−τ )2 − eP

2 ] (angle between (−τ )2
and eP

2 on the ((−τ )2, (−τ )1)-plane), eP
2 is the projection of e2 on this plane), and φ[(−τ )P3 −e1]

(angle between e1 and (−τ )P3 on the (e1, e2)-plane), (−τ )P3 is the projection of (−τ )3 on this
plane).

(figure not shown), which is closer to the values reported in Tao et al. (2000) and Tao
et al. (2002). This point will be discussed in § 4.

Figure 3(a) shows the p.d.f. of the alignment between the vorticity vector ω and the
strain-rate eigenvector ei , cosθ[ω−ei] (i = 1, 2, 3), where ω = (ωi), ωi = εilm(∂um/∂xl),
εilm is the alternating tensor. As was shown in Ashurst et al. (1987), Vincent &
Meneguzzi (1994) and Tao et al. (2002) (and the references therein), the most probable
state is that the eigenvector e2 for the intermediate eigenvalue, σ2, is aligned with
the vorticity vector, ω, and the eigenvector e3 for the smallest eigenvalue, σ3, is
perpendicular to the vorticity vector. This preferential alignment of the eigenvector
e2 and ω can be explained using a Burgers vortex tube and layer models (Batchelor
1967) as was shown in Jiménez (1992), Andreotti (1997), Nomura & Post (1998) and
Horiuti (2001). When the circulation around the tube and the strain along the layer
are weak, e1 is parallel to ω, but when they are strong, the crossover of the eigenvalues
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Figure 3. Distribution of p.d.f. for the alignment: (a) between the vorticity vector and the
strain-rate eigenvectors, cosθ[ω − ei] (i = 1, 2, 3), and (b) between the vorticity vector and the
stress eigenvectors, cosθ [ω − τ i] (i = 1, 2, 3).
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takes place along the radial axis of the tube and along the axis perpendicular to the
layer, and e2 is parallel to ω.

Figure 3(b) shows the p.d.f. of the alignment between the vorticity vector ω and
the SGS stress tensor eigenvector, (−τ )i (i = 1, 2, 3), cosθ[ω − (−τ )i] (i = 1, 2, 3).
The most probable state is that the eigenvector (−τ )1 for the most contracting stress
eigenvalue, (−τ )1, is aligned with the vorticity vector, and the eigenvector (−τ )3 for
the most extensive stress eigenvalue, (−τ )3, is perpendicular to the vorticity vector.

As a result, among the strain-rate eigenvectors, e2 is preferentially aligned with
the vorticity vector, whereas, among the stress eigenvectors, (−τ )1 is preferentially
aligned with the vorticity vector. The probability of occurrence of alignment of
the intermediate stress eigenvector, (−τ )2, with the vorticity vector, however, is not
negligibly small. Therefore, appearance of the αβγ − αβγ configuration or the αβγ −
βαγ configuration depends on the degree of alignment of the strain-rate and stress
eigenvectors with the vorticity vector, e.g. when (−τ )1 is aligned with ω, the αβγ −βαγ

configuration preferentially arises, while when (−τ )2 is aligned with ω, the αβγ −αβγ

configuration preferentially arises.
To prevent the appearance of this bimodal behaviour of alignment, we adopted

an alternative reordering of the eigenvalues and corresponding eigenvectors. In the
present study, the eigenvalues σi (i = 1.2.3) were reordered so that the eigenvalue,
the eigenvector of which is maximally aligned with the vorticity vector, ω, is chosen
as σz, the largest remaining eigenvalue, as σ+, and the smallest one, as σ−. The
corresponding eigenvectors for eigenvalues, σz, σ+, σ−, were denoted as ez, e+, e−,
respectively (Andreotti 1997; Horiuti 2001). When this reordering was complete,
the intermediate eigenvector e2 was preferentially reordered as ez, and this ordering
took place on ≈ 48% of the grid points, whereas when the stress eigenvalues, (−τ )i ,
were reordered, the eigenvector (−τ )1 was preferentially reordered as (−τ )z, and this
ordering took place on ≈ 50% of the grid points.

Figure 4(a) shows the joint p.d.f. of the alignment between the (reordered) stress
eigenvector (−τ )z and the (reordered) strain-rate eigenvector ez, cosθ[(−τ )z − ez],
and alignment between (−τ )+ and e+, ζ [(−τ )+ − eP

+]. eP
+ is the projection of e+

on the ((−τ )+, (−τ )−)-plane. The most probable state is that of θ[(−τ )z − ez] ≈ 0
and ζ [(−τ )+ − eP

+] ≈ 0. The bimodal behaviour of the alignment observed in figure 1
was eliminated, and the eigenvector (−τ )z is preferentially aligned with ez by definition.
Figure 4(b) shows the joint p.d.f. of the alignment between (−τ )− and e−, cosθ[(−τ )−−
e−], and alignment between (−τ )z and ez, ζ [(−τ )z − eP

z ]. The most probable state is
that of θ[(−τ )− −e−] ≈ 42◦ and ζ [(−τ )z −eP

z ] ≈ 0. Shown in figure 5 are the alignment
between the stress eigenvector (−τ )z and the strain-rate eigenvector ez, cosθ[(−τ )z −
ez], the alignment between the eigenvectors (−τ )+ and e+, cosθ[(−τ )+ − e+], and the
alignment between the eigenvectors (−τ )− and e−, cosθ[(−τ )− − e−]. It can be seen
in figure 5 that the eigenvectors ((−τ )+, e+) and ((−τ )−, e−) have a strongly preferred
relative orientation of θ[(−τ )± − e±] ≈ 42◦.

Using figures 4 and 5, we determined the most probable configuration of alignment
of the eigenvectors ez, e+, e− and (−τ )z, (−τ )+, (−τ )− as that sketched in figure 6(a),
which is similar to the configuration obtained in Tao et al. (2002), but the appearance
of the bimodal behaviour has been eliminated.

In Tao et al. (2002), to investigate the alignment trends, a series of conditional
samplings based on the magnitudes of the SGS production term, strain rate, stress,
strain state parameter, and vorticity was performed. It was shown that the relative
alignments are substantially affected by these parameters. When the entire field is
decomposed based on the magnitudes of the strain rate and the vorticity, the structure
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Figure 5. Distribution of p.d.f. for the alignment between the strain-rate eigenvectors, ei ,
and the SGS stress eigenvectors, (−τ )i , cosθ [(−τ )i − ei] (i = z,+, −).

of a region in which strain rate is dominant is similar to that of a cylindrical sheet
around the core of a Burgers vortex tube (denoted in the following as a curved sheet),
and a vorticity-dominated region is similar to a core region of a Burgers vortex tube
(tube core). We note that there exists another region in which the magnitudes of
vorticity and strain rate are comparable and large, and this region generally forms a
sheet-like structure which is similar to a Burgers vortex layer (flat sheet). The curved
sheet can be effectively identified by imposing the condition on the two reordered
eigenvalues of the λ2 method (Jeong & Hussain 1995), λ±, as λ+ � λ− > 0, while the
flat sheet can be identified as λ+ � 0 � λ−, and the tube core as 0 > λ+ � λ− (Horiuti
2001). In the present study, we decompose the entire turbulence field into these three
regions using the above classification method.

As in Tao et al. (2002), it was found that the relative alignment of the strain-rate
and stress eigenvectors is dependent on the decomposition of the entire field in the
present study. In figure 7, the distributions of the p.d.f.s for cosθ[(−τ )− − e−] which
are decomposed into those in the curved-sheet, flat-sheet and tube-core regions are
shown. It can be seen that the most preferred angle of the alignment between (−τ )−
and e− is the smallest one in the curved-sheet region (cosθ[(−τ )− − e−] ≈ 0.83, i.e.
θ[(−τ )− −e−] ≈ 33◦), the largest one in the tube-core region (cosθ [(−τ )− −e−] ≈ 0.73,
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Figure 6. Perspective sketch of the most probable alignment configuration between the
eigen-directions of the strain-rate tensor and the SGS stress tensor: (a) identified for the
whole region, and (b) identified by conditionally sampling for the backward scatter events
(P < 0).
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Figure 7. Distributions of p.d.f. for the alignment between the stress eigenvector, (−τ )−, and
the strain-rate eigenvector, e−, cosθ [(−τ )− − e−], which are decomposed into the curved sheet,
flat sheet and tube core regions.

i.e. θ[(−τ )− −e−] ≈ 43◦), and the intermediate one in the flat-sheet region (cos θ[(−τ )−
− e−] ≈ 0.79, i.e. θ[(−τ )− − e−] ≈ 38◦).

Figure 8 shows the joint p.d.f. of the alignment between the stress eigenvector
(−τ )− and the strain-rate eigenvector e−, cosθ[(−τ )− − e−], and alignment between
(−τ )z and ez, ζ [(−τ )z − eP

z ], which was conditionally sampled in the flat-sheet
region. Different from the joint p.d.f. for cosθ[(−τ )− − e−] versus ζ [(−τ )z − eP

z ]
sampled in the entire region shown in figure 4(b), the peak of the p.d.f. is located at
cosθ[(−τ )− − e−] ≈ 0.8 (i.e. θ[(−τ )− − e−] ≈ 38◦) and ζ [(−τ )z − eP

z ] ≈ 17◦. This peak
emerged selectively in the flat-sheet region. The weak peak in figure 4(a) discernible at
cosθ[(−τ )z − ez] ≈ 0.95 (i.e. θ [(−τ )z − ez] ≈ 18◦) and ζ [(−τ )+ − eP

+] ≈ 18◦ corresponds
to this peak. These results indicate that the alignment configuration in the flat-sheet
region is somewhat different from those in the tube-core and curved-sheet regions.
In fact, when the strain state acting on each region was interpreted using the strain
parameter, s∗(= −3

√
6σ1σ2σ3/(σ

2
1 + σ 2

2 + σ 2
3 )3/2) (Lund & Rogers 1994), the strain

state acting on the flat-sheet region was different from those acting on the tube-core
and curved-sheet regions. The distributions of the p.d.f.s for s∗ in these three regions
(figure not shown) were similar to those shown in figure 7 of Horiuti (2001), and s∗
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Figure 8. Joint p.d.f. of the alignment between the stress eigenvector (−τ )− and the strain-rate
eigenvector e−, cosθ [(−τ )− − e−], and alignment between (−τ )z and ez, ζ [(−τ )z − eP

z ], which
was conditionally sampled in the flat-sheet region.

showed a weak maximum near s∗ = 0.9 in the flat-sheet region. Using figures 8 and
4(a), we determined the most probable configuration of alignment in the flat-sheet
region to be that sketched in figure 9. Note that (−τ )z is on the (ez − e+)-plane in
figure 9. The distributions of the p.d.f.s for cosθ[(−τ )− − e−] versus ζ [(−τ )z − eP

z ]
sampled in the tube-core and curved-sheet regions were similar to that shown in
figure 4(b), and thus the most probable alignment configuration in the tube-core and
curved-sheet regions was that shown in figure 6(a).

3. Decomposition of the SGS stress tensor
To identify the specific term which causes the non-alignment of the eigenvectors

for the SGS stress and strain-rate tensors described in the previous section, we de-
compose the SGS stress tensor, τij , using the nonlinear model, (1.6), as,

τij � ∆
2

12

∂ui

∂xk

∂uj

∂xk

=
∆

2

12
{(SikSkj − ΩikΩkj ) − (SikΩkj + SjkΩki)}, (3.1)
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Figure 9. Perspective sketch of the most probable alignment configuration between the
eigen-directions of the strain-rate tensor and the SGS stress tensor, which was conditionally
sampled in the flat-sheet region.

where Ωij (= (∂ui/∂xj − ∂uj/∂xi)/2) is the grid-scale vorticity tensor. For a general
form of the nonlinear model, see the Appendix. We examine the alignment of
eigenvectors for each term in (3.1) with the strain-rate eigenvectors. Figures 10(a)
and 10(b), respectively, show the alignment between ei and the eigenvectors for the
−∆

2
(SikSkj −ΩikΩkj )/12 term, and the alignment between ei and the eigenvectors for

the ∆
2
(SikΩkj + SjkΩki)/12 term. The eigenvectors for the −∆

2
(SikSkj − ΩikΩkj )/12

term, −[∆
2
(SS − ΩΩ)/12]i , are highly aligned with the strain-rate eigenvectors,

whereas positive and negative components of eigenvectors for the ∆
2
(SikΩkj +

SjkΩki)/12 term, [∆
2
(SΩ + SΩ)/12]±, make preferential angles of 45◦ with e±,

respectively.
This angle (45◦) can be derived by considering the eigenvalues for the matrix,

SΩ + SΩ , the elements of which consist of the (SikΩkj + SjkΩki) terms. The
elements of S and Ω are, respectively, Sij and Ωij . The matrix SΩ + SΩ on
the basis of the principal strain eigenvectors, e+, e−, ez, ET(SΩ + SΩ)E, can be
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Figure 10. Distribution of p.d.f. for the alignment: (a) between the eigenvectors for the
−∆

2
(SikSkj − ΩikΩkj )/12 term, and the strain-rate eigenvectors, ei , cosθ [−[∆

2
(SS − ΩΩ)/

12]i − ei] (i = z,+, −), and (b) between the eigenvectors for the ∆
2
(SikΩkj + SjkΩki)/12 term,

and ei , cosθ [[∆
2
(SΩ + SΩ)/12]i − ei] (i = z,+, −).
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obtained as

L =


0 − 1

2
(σ+ − σ−)ωz

1
2
(σ+ − σz)ω−

− 1
2
(σ+ − σ−)ωz 0 − 1

2
(σ− − σz)ω+

1
2
(σ+ − σz)ω− − 1

2
(σ− − σz)ω+ 0

 .

The matrices, E and ET, are orthogonal matrices whose rows and columns, respectively,
are e+, e−, ez (Nomura & Post 1998). ω+, ω−, ωz are the vorticity components
projected onto the basis of the principal strain eigenvectors, ω · e+, ω · e−, ω · ez,
respectively. Note that the trace of the (SikΩkj + SjkΩki) terms is equal to zero, thus
the trace of the matrix L is zero.

Because the amplitude of ωz is predominantly larger than those of ω+ and ω−, the
matrix L can be approximated as

L′ =


0 − 1

2
(σ+ − σ−)ωz 0

− 1
2
(σ+ − σ−)ωz 0 0

0 0 0

 .

It can be readily seen that the eigenvalue of L′ in the stretching direction (ez) is zero.
The remaining two eigenvalues are

1
2
(σ+ − σ−)ωz, − 1

2
(σ+ − σ−)ωz, (3.2)

and their eigenvectors make angles of 45◦ with the strain-rate eigenvectors, e+, e−.
Similarly, the matrix, SS − ΩΩ , the elements of which consist of the (SikSkj −

ΩikΩkj ) terms on the basis of the principal strain eigenvectors, ET(SS − ΩΩ)E, can
be derived as

M =


σ 2

+ + 1
4

(
ω2

− + ω2
z

)
1
4
ω+ω−

1
4
ω+ωz

1
4
ω−ω+ σ 2

− + 1
4

(
ω2

+ + ω2
z

)
1
4
ω−ωz

1
4
ωzω+

1
4
ωzω− σ 2

z + 1
4
(ω2

+ + ω2
−)

 .

Because the amplitudes of off-diagonal elements of matrix M, ω+ω−, ω+ωz, ω−ωz,
were negligibly small in the DNS data, the matrix M can be approximately rewritten
as

M′ =


σ 2

+ + 1
4

(
ω2

− + ω2
z

)
0 0

0 σ 2
− + 1

4

(
ω2

+ + ω2
z

)
0

0 0 σ 2
z + 1

4
(ω2

+ + ω2
−)

 .

It can be seen that the eigenvectors for the (SikSkj − ΩikΩkj ) term are almost parallel
to the eigenvectors for the strain-rate tensor. The matrix M′ constitutes the normal
components of the SGS stress tensor, whereas the matrix L′ constitutes the shear
components of the SGS stress tensor on the basis of ez, e+, e−.

It is shown that non-alignment of eigenvectors primarily arises in the −∆
2
(SikΩkj +

SjkΩki)/12 term. Figure 11 shows the alignment of the eigenvectors for the
−(τij + ∆

2
(SikΩkj + SjkΩki)/12) term, −[τ + ∆

2
(SΩ + SΩ)/12]i , and the strain-

rate eigenvectors, cosθ[−[τ + ∆
2
(SΩ + SΩ)/12]i − ei]. It can be seen that when the

−∆
2
(SikΩkj + SjkΩki)/12 term was subtracted from the τij term, the eigenvectors for

the remainder were nearly parallel to the strain-rate eigenvectors. We note that this
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Figure 11. Distribution of p.d.f. for the alignment between the eigenvectors for the −(τij +

∆
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(SikΩkj + SjkΩki)/12) term and the strain-rate eigenvectors, ei , cosθ [−[τ + ∆

2
(SΩ + SΩ)/

12]i − ei] (i = z,+, −).

alignment trend was unchanged even when the DNS data were truncated to more
coarse grid points (323) (figure not shown).

In figure 6(a), we included the sketch of the alignment configuration for
the eigenvectors of the ∆

2
(SikΩkj + SjkΩki)/12 term, [∆

2
(SΩ + SΩ)/12]i , and

the −(τij + ∆
2
(SikΩkj + SjkΩki)/12) term, −[τ + ∆

2
(SΩ + SΩ)/12]i . The angle

which the eigenvector for the (−τij ) term, (−τ )+, forms with e+, θ[(−τ )+ − e+],

is intermediate between the angle θ[[∆
2
(SΩ + SΩ)/12]+ − e+](≈ 45◦) and the

angle θ[−[τ + ∆
2
(SΩ + SΩ)/12]+ − e+](≈ 0◦), i.e. 0 < θ[(−τ )+ − e+] < 45◦. Similarly,

θ[(−τ )− − e−], is intermediate between the angle θ[[∆
2
(SΩ +SΩ)/12]− − e−] and the

angle θ[−[τ + ∆
2
(SΩ + SΩ)/12]− − e−].

An energy cascade between the grid scale and the SGS takes place through the
SGS energy transfer term as

ui

∂τij

∂xj

=
∂

∂xj

(uiτij ) − τijSij , (3.3)
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which has been used to analyse the energy exchange between the grid scale and the
SGS in Kerr, Domaradzki & Barbier (1996) and Langford & Moser (1999). Kerr
et al. (1996) showed that the SGS energy transfer term contains both large forward
scatter of the grid-scale energy into the SGS and backward scatter of the SGS energy
into the grid scale, and the magnitude of the latter is comparable with that of the
former. When the right-hand side of (3.3) is integrated in the entire computational
domain, the first term vanishes. Therefore, forward and backward scatters are equally
generated via the first term. Because the first term makes no contribution to the SGS
energy transfer on average, and also because the first term cannot be considered
on the basis of the principal strain eigenvectors, whereas the second term can be
considered on this basis, we analysed the energy transfer using the second term in
(3.3), P .

The second term can be written in a general form as the (generalized) SGS
production term, Pij ,

Pij = −(τikSkj + τjkSki)/2. (3.4)

It should be noted that, in the trace of Pij , i.e. the total production term Pii(= P ),

the −∆
2
(SikΩkj + SjkΩki)/12 term vanishes (Kosović 1997), thus the −∆

2
(SikΩkj +

SjkΩki)/12 term makes no contribution to the production of the total SGS energy. This
is why the low correlation between the exact τij term and the τij term approximated
using the Smagorinsky model was markedly improved when the correlation between
them was calculated on the SGS production term, P . The first term in (3.1) yields the
estimate of the exact production term as

P ≈ ∆
2{−(SikSkj − ΩikΩkj )Sji}/12. (3.5)

The first term in (3.5),

−SikSkjSji = −3σ1σ2σ3 = −3σzσ+σ−, (3.6)

is the skewness of the grid-scale velocity gradient and is equal to the production
term for the grid-scale strain rate, SikSki/2. The second term in (3.5), ΩikΩkjSji , is
the grid-scale vortex-stretching term and is the production term for the grid-scale
enstrophy, −ΩikΩki/2.

Because the eigenvectors for the −(τij + ∆
2
(SikΩkj + SjkΩki)/12) term are

approximately aligned with the strain-rate eigenvectors, the matrix which consists
of the −(τij + ∆

2
(SikΩkj + SjkΩki)/12) terms and the matrix which consists of the

Sij terms can be simultaneously diagonalized when the matrices are transformed
on the basis of the principal strain eigenvectors. If the diagonal elements of the
transformed matrices, i.e. eigenvalues of these two matrices, are close to each other,
the SGS eddy-viscosity model may be adequate to approximate the τij term, when the
performance of the SGS model is evaluated based on the accuracy of its estimation of
the total production term, P . The eigenvalue of the −(τij + ∆

2
(SikΩkj + SjkΩki)/12)

term, −[τij + ∆
2
(SikΩkj + SjkΩki)/12]+ and the strain-rate eigenvalue, σ+, however,

were poorly correlated (ρ ≈ −0.085, figure not shown). Another eigenvalue of the
−(τij +∆

2
(SikΩkj +SjkΩki)/12) term, −[τij +∆

2
(SikΩkj +SjkΩki)/12]− and the strain-

rate eigenvalue, σ− were better correlated (ρ ≈ 0.46), but their correlation is still low.
These results indicate another drawback of the (isotropic) SGS eddy-viscosity model,
that is, the isotropic SGS eddy-viscosity coefficient is inadequate and the anisotropic
coefficient is more desirable for approximating the τij term.
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In the generalized production term, Pij , elimination of the −∆
2
(SikΩkj +SjkΩki)/12

term does not take place. To examine whether the influence of the off-diagonal
elements of the matrix, (Pij ), the elements of which consist of the Pij terms, on
the generalized production term is significant, we examined the eigenvalues for the
matrix, (Pij ). The magnitudes of the eigenvalues of the matrix, (Pij ), were reduced
to approximately half when the eigenvalues were calculated by subtracting the
−∆

2
(SikΩkj + SjkΩki)/12 term from the τij term (figure not shown). This result

indicates that the −∆
2
(SikΩkj + SjkΩki)/12 term which causes non-alignment of the

eigenvectors makes a noticeable contribution to the generalized production term, Pij ,
although it makes no contribution to the trace of the Pij term, implying that the off-
diagonal components of the Pij term are as important as the diagonal components,
and should be taken into consideration for a proper SGS modelling. As was suggested
in Langford & Moser (1999), the difference in the magnitudes of the eigenvalues of
the matrix (Pij ) in which the −∆

2
(SikΩkj + SjkΩki)/12 term was retained in the τij

term and the eigenvalues in which the −∆
2
(SikΩkj + SjkΩki)/12 term was removed

from the τij term may become larger in turbulence with mean shear than in that
without mean shear, since the shear stress does not vanish on average in a sheared
turbulence.

In the dynamic Smagorinsky model (DSM) (Piomelli et al. 1991), the model para-

meter CS was determined as CS = (Lij Eij )/(Eij Eij ), where Lij = (ũiuj − ũi ũj ), Eij =

2{∆2|S̃|Sij − ∆̃
2
|S̃|S̃ij } and the tildes denote the application of a test filter. The Taylor

expansion of the Lij term contains a term similar to the −∆
2
(SikΩkj + SjkΩki)/12

term, and this term is not eliminated when contraction with the Eij term was taken.
A good performance of the DSM, for representing the backward scatter in particular
(Piomelli et al. 1991), may be partly attributed to the retention of this term.

4. Characteristic features of the identified term
In the previous section, the term which is primarily responsible for causing a non-

alignment of the eigenvectors for the SGS stress tensor and the strain-rate tensor
was identified as the term, −∆

2
(SikΩkj + SjkΩki)/12 . In this section, we conduct a

detailed investigation on the characteristics of the identified term to reveal the role of
this term in turbulence generation.

The correlation between the exact τij term and the term modelled using the
nonlinear model was very high (ρ ≈ 0.91). The correlation between the exact τij term

and the ∆
2
(SikSkj −ΩikΩkj )/12 term was low (≈ 0.51), whereas that between the exact

τij term and the −∆
2
(SikΩkj + SjkΩki)/12 terms was high (≈ 0.75), indicating that

the −∆
2
(SikΩkj + SjkΩki)/12 term is primarily responsible for the high correlation

incurred by the nonlinear model.
Analytical solutions of the eigenvalues for the matrix which consists of the

−(SikΩkj + SjkΩki) term in the flow with unidirectional vorticity (ω+ = ω− = 0),
can be obtained using the matrix L as

[−(SikΩkj + SjkΩki)]z = 0,

[−(SikΩkj + SjkΩki)]+ = −[−(SikΩkj + SjkΩki)]−.

}
(4.1)

When the eigenvalues of the −∆
2
(SikΩkj +SjkΩki)/12 term were obtained using the

filtered DNS data described in § 2, the eigenvalue in the stretching (z-)direction was
mostly close to zero (figure not shown). This result is consistent with the analytical
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solutions shown in (4.1), implying that the −(SikΩkj + SjkΩki) term makes only a
minor contribution to the development of the stress in the stretching (z-)direction,
but contributes significantly to the development in the azimuthal directions (+, −).

Although the −∆
2
(SikΩkj + SjkΩki)/12 term vanishes in the total production

term, P , the contribution of this term is not eliminated when the generation of the
vorticity is considered using the generation term for the SGS enstrophy, (ωiωi −ωiωi)/
2(= ΩijΩij − ΩijΩij ), owing to the τij term,

Pω = εilmωi

∂2τmj

∂xl∂xj

. (4.2)

This result indicates that the evolution of turbulent energy and enstrophy due to
the −∆

2
(SikΩkj + SjkΩki)/12 term does not take place simultaneously, but occurs

with a slight time-lag. Kerr et al. (1996) showed that the interaction of the grid-scale
velocity and the SGS vorticity is correlated strongly with the SGS transfer term,
(3.3). An existence of time-lag (or phase-lag) was shown for the Kolmogorov flow
(Borue & Orszag 1996), in which the signals for the turbulent energy and enstrophy
were strongly coherent with a characteristic phase shift. In Yakhot (2003), it was
shown that self-sustained nonlinear oscillation of energy and enstrophy describes the
process of energy and enstrophy production. Although the results shown in Borue
& Orszag (1996) and Yakhot (2003) were obtained in turbulence with mean shear,
intense local grid-scale shear which arises even in LES of a turbulent flow without
mean shear may cause similar effects on the local evolution of the SGS energy and
enstrophy. An explanation for the occurrence of this time-lag was provided in Borue
& Orszag (1996): the total energy dissipation rate is strongly correlated with the time
derivative of the total energy, while the total dissipation rate is proportional to the
total enstrophy. An alternative explanation is that the velocity field is generated by
the vortex via the Biot-Savart law (Yakhot 2003). Although the generation of time-lag
may be more significant in turbulence with mean shear than in that without mean
shear, these two explanations are applicable to the turbulence without mean shear as
well. We consider that the occurrence of this time-lag may be primarily attributed to
the −∆

2
(SikΩkj + SjkΩki)/12 term.

For both the turbulent energy and enstrophy, although a mean direction of their
transfer is from the grid scale components to the SGS components (forward scatter),
the SGS component is transferred in the opposite direction to the grid scale (backward
scatter) as well. It was found that the backward scatter of the SGS enstrophy is
correlated with the backward scatter of the SGS energy. Figure 12 shows distributions
of p.d.f.s for the SGS enstrophy generation term due to the −∆

2
(SikΩkj + SjkΩki)/12

term ((4.2) with τij = −∆
2
(SikΩkj + SjkΩki)/12 ) taken by conditionally sampling for

forward scatter events (P > 0) and for backward scatter events (P < 0). It can be seen
that the p.d.f.s are skewed to positive values when P > 0, whereas they are skewed
to negative values when P < 0. This result implies that the backward generation of
grid-scale vorticity due to the −∆

2
(SikΩkj + SjkΩki)/12 term is associated with the

backward scatter of the SGS energy. On the whole, the p.d.f. for the Pω term due
to the −∆

2
(SikΩkj + SjkΩki)/12 term was skewed to the negative value. When the

−∆
2
(SikΩkj + SjkΩki)/12 term was removed from the τij term, the p.d.f. was skewed

to predominantly positive values (figure not shown).
In Langford & Moser (1999), it was shown that the grid-scale statistics obtained

using the various SGS models are equivalent as long as the SGS energy transfer takes
place correctly, indicating that accurate representation of vorticity generation is not
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Figure 12. Distributions of p.d.f. for the SGS enstrophy generation term (equation (13)) due
to the −∆

2
(SikΩkj + SjkΩki)/12 term, which was conditionally sampled on the sign of P .

indispensable to achieve an optimal SGS model. Elimination of the −∆
2
(SikΩkj +

SjkΩki)/12 term in the P term and its retention in the Pω term may be insignificant.
In Langford & Moser (1999), however, the SGS energy transfer term, (3.1), was
used to analyse the energy production, whereas the P term was used in the present
study. It should be noted that the SGS transfer term contains the contribution of
the −∆

2
(SikΩkj + SjkΩki)/12 term since the −∆

2
(SikΩkj + SjkΩki)/12 term does not

vanish in the transfer term. Moreover, in Langford & Moser (1999), the optimal SGS
model was derived using not the SGS transfer term itself, (3.1), but its correlation as
〈ui(ξ )(∂τij /∂xj )(ξ + x)〉, where ξ = (ξi), and 〈f 〉 denotes the volume average of f in
the entire domain. The optimal model obtained in Langford & Moser (1999) was the
same as a spectral eddy-viscosity model.

It was shown using figure 11 that when the −∆
2
(SikΩkj + SjkΩki)/12 term was

removed from the τij term, the eigenvectors for the SGS stress and strain-rate
tensors are aligned. When the p.d.f. for the alignment between the eigenvector for
the −(τij + ∆

2
(SikΩkj + SjkΩki)/12) term, −[τ + ∆

2
(SΩ + SΩ)/12]i , and the strain-

rate eigenvector, ei was taken by conditionally sampling on P > 0, the distribution
of the p.d.f. was similar to that shown in figure 11, but the two eigenvectors were
more strongly aligned (figure not shown). When the p.d.f. was taken by conditionally



86 K. Horiuti

p.
d.

f.

θ[–[τ+∆2(SΩ+SΩ)/12]+ –e–]

cos θ[–[τ+∆2(SΩ+SΩ)/12]i –ei]

θ[–[τ+∆2(SΩ+SΩ)/12]– –e+]

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

–1 –0.5 0 0.5 1

P < 0

Figure 13. Distribution of p.d.f. for the alignment between the eigenvector for the −(τij +
∆

2
(SikΩkj + SjkΩki)/12) term and the strain-rate eigenvector, ei obtained by conditionally

sampling on P < 0.

sampling on P < 0, the interchange of alignment of these two eigenvectors took place
as shown in figure 13, which shows the p.d.f.s for cosθ [−[τ +∆

2
(SΩ +SΩ)/12]+ − e−]

and cosθ[−[τ +∆
2
(SΩ +SΩ)/12]− − e+]. Therefore, the eigenvectors −[τ +∆

2
(SΩ +

SΩ)/12]± and e±, respectively, are highly aligned when conditionally sampled on
P > 0, but when P < 0, the eigenvectors, −[τ + ∆

2
(SΩ + SΩ)/12]±, are not aligned

with e±, respectively, but are aligned with e∓, respectively, indicating that the use of
a negative eddy-viscosity coefficient to represent the backward scatter is not feasible,
and it should be represented by the interchange of alignment of the eigenvectors.
Thus, the SGS eddy-viscosity model possesses another limitation in that the backward
scatter cannot be represented using this model.

In Tao et al. (2002), it was shown that the angle which the eigenvector for
the SGS stress tensor, (−τ )1, makes with e1, θ[(−τ )1 − e1], of peak probability
was increased to ≈ 55◦, when this angle was conditionally sampled on the intense
backward scatter events (P � −〈P 〉). Consistency of this value (55◦) with a theoretical
estimate of the angle using the approximate equation for the production term
was presented. The strain state which was assumed in Tao et al. (2002) was that
σ3 = −2σ1. This assumption may not be appropriate, since the derivative skewness,
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−σ1σ2σ3 = −(SikSkjSji)/3 (equation (3.6)), which indicates the degree of strength
of the energy cascade into the small scale becomes positive (= 2σ 3

1 > 0), while the
−σ1σ2σ3 term is generally negative when the backward scatter occurs.

We provide here an alternative explanation for the increase of the angle in the
backward scatter events. In figure 6(b), we showed the sketch of the alignment
configuration for the eigenvectors which was determined by conditionally sampling on
the backward scatter events (P < 0). When P < 0, the angle which the eigenvector for
the (−τij ) term, (−τ )+, forms with e+, θ[(−τ )+ −e+], is intermediate between the angle

θ[[∆
2
(SΩ + SΩ)/12]+ − e+](≈ 45◦) and the angle θ[−[τ + ∆

2
(SΩ + SΩ)/12]+ − e+]

(≈ 90◦) because of the interchange of alignment, i.e. 45◦ <θ[(−τ )+ − e+] < 90◦. The
angle obtained in the present study was ≈ 48◦, although this angle was dependent
on the decomposed regions of the curved sheet, the flat sheet and the tube core. We
consider that the difference in the angle obtained for the sample condition, P > 0,
and the angle obtained for P < 0 is primarily attributed to the interchange of
alignment of the eigenvectors −[τ +(∆

2
(SΩ +SΩ)/12)]± and e±. The angle obtained

in Tao et al. (2002) (≈ 55◦) was slightly larger than the present value, but in both Tao
et al. (2002) and the present study, the summation of the angles for the cases P > 0
and P < 0 was ≈ 90◦.

It can be readily seen in the −∆
2
(SikΩkj + SjkΩki)/12 term that this term takes

a large value in the region where the amplitudes of strain-rate and vorticity are
comparable and large, such as the Burgers vortex-layer. To examine this property of
the −∆

2
(SikΩkj + SjkΩki)/12 term, we derived the analytical eigenvalue solutions for

Burgers vortex models. The eigenvalue of the −(SikΩkj + SjkΩki) term, [−(SikΩkj +
SjkΩki)]+, can be obtained for the Burgers vortex-layer as

[−(SikΩkj + SjkΩki)]+ = α2Reδ exp

(
−αy2

2ν

)√
Re2

δ exp

(
−αy2

ν

)
+ 1, (4.3)

where α denotes the stretching parameter, Reδ(=
√

π/2U0/
√

αν) is the Reynolds
number based on the strength of strain, U0, and y is the distance from the centre
of the layer (Horiuti 2001). Figure 14(a) shows the y-distributions of the eigenvalue,
[−(SikΩkj + SjkΩki)]+, and the eigenvalues for the λ2 method, λ±, obtained for the
Burgers vortex-layer model where α was chosen to be equal to 1.0, ν =0.25, and
Reδ = 10. As was expected, the eigenvalue, [−(SikΩkj + SjkΩki)]+, is markedly large
near the centre of the layer where λ+ � 0 � λ−, and decreases vary rapidly away from
the centre.

For the Burgers vortex tube, the eigenvalue, [−(SikΩkj +SjkΩki)]+, can be given as

[−(SikΩkj + SjkΩki)]+ = α2Re2
Γ g(r)

(
4ν

αr2
{1 − g(r)} − g(r)

)
, g(r) = exp

(
−αr2

4ν

)
,

(4.4)

where ReΓ (= Γ/(4πν)) is the Reynolds number based on the circulation around the
tube, Γ , and r is the distance from the centre of the tube. Figure 14(b) shows the
r-distributions of the eigenvalue, [−(SikΩkj + SjkΩki)]+, and the λ2 eigenvalues, λ±,
obtained for the Burgers vortex-tube model in which α was set equal to 0.02, ν = 0.25
and ReΓ = 50. It can be seen that the eigenvalue, [−(SikΩkj +SjkΩki)]+, is very small
near the centre of the tube, where 0 > λ+ � λ− (tube core), and in the curved-sheet
region of the tube where λ+ � λ− > 0.

These results show that the eigenvalue, [−(SikΩkj + SjkΩki)]+, is very large in the
vicinity of the centre of the vortex sheet similar to the Burgers vortex layer, i.e. the flat
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Figure 14. y-distributions of the reordered λ2 eigenvalues, λ±, and the eigenvalue of the

−(SikΩkj + SjkΩki) term, −[SikΩkj + SjkΩki]+: (a) obtained for the Burgers vortex-layer
model (α =1.0, ν = 0.25, Reδ = 10), and (b) obtained for the Burgers vortex-tube model
(α = 0.02, ν = 0.25, ReΓ = 50).



Roles of non-aligned eigenvectors 89

sheet. We note that although the magnitude of the eigenvalue, [−(SikΩkj +SjkΩki)]+,
is very small at the centre of the vortex tube, it becomes large near the outer edge of
the core region of the tube (r ≈ 1.2 in figure 14b).

The eigenvalue, [−(SikΩkj + SjkΩki)]+ can be used to identify the flat sheet.
Although the flat sheet can be identified using the isosurfaces of the λ− eigenvalue
with negative values (Horiuti 2001), when this eigenvalue was used, the tube core
as well as the flat sheet were identified. For identifying the flat sheet by isolating it
from the tube core, the isosurfaces for the eigenvalue, [−(SikΩkj +SjkΩki)]+, perform
better than those of λ−.

In figure 7, it can be seen that the probability for cosθ[(−τ )− − e−] ≈ 1 in the
curved-sheet region is much larger than those in the flat-sheet and tube-core regions,
indicating that the occurrence of alignment between (−τ )− and e− is more frequent
in the curved-sheet region. The alignment of (−τ )− and e− can be discernible in
figure 4(b), and also a weak peak at cosθ[(−τ )1 − e1] ≈ 1 and ζ [(−τ )2 − eP

2 ] ≈ 0 in
figure 1 indicates that this alignment occasionally takes place. Because of the reduction

of the magnitude of the −∆
2
(SikΩkj + SjkΩki)/12 term which causes non-alignment

of (−τ )− and e− in the curved-sheet region, (−τ )− and e− are more aligned in the
curved-sheet region than in the flat-sheet and tube-core regions. Since the magnitude

of the −∆
2
(SikΩkj + SjkΩki)/12 term becomes rather large near the outer edge of

the tube-core region, the effect of the −∆
2
(SikΩkj + SjkΩki)/12 term is large in the

tube-core region, which induces a non-alignment as in the flat-sheet region.
We mentioned in § 2 that the most probable alignment angle between the strain-rate

and SGS stress eigenvectors depends on the truncation of the number of grid points
from the DNS data into that of the LES data. We consider that the alignment angle
depends on the degree of resolution of the flat-sheet region yielded by the LES mesh,
i.e. the more finely the flat-sheet region is resolved on the LES mesh, the closer the
angle is to 45◦. The difference in the preferred alignment angle obtained in the present
study and those in Tao et al. (2000) and Tao et al. (2002) may be partly attributed
to this dependence on the resolution.

5. A posteriori assessment of roles of identified term
In this section, we carry out an a posteriori assessment of the result obtained in § 4

to elucidate the role of the identified term, −∆
2
(SikΩkj + SjkΩki)/12 , in the actual

development of a turbulence field.
This a posteriori assessment was carried out in LES of ABC flow. DNS data for

the ABC flow were generated using 135, 135 and 135 grid points, respectively, in the
x-, y- and z-directions, in which the initial values were the same as those used in the
previous study (Horiuti 2001). ν was set equal to 1/250. The initial values used for
LES computations were those obtained by filtering the initial data of DNS using the
Gaussian filter, where 135, 135 and 135 grid points were used, respectively, in the x-,
y- and z-directions.

Three cases of LES calculations were considered using the variants of the nonlinear
model. In Case I, the nonlinear model, (3.1), was used. Although it was shown in the
previous section that the −∆

2
(SikΩkj +SjkΩki)/12 term does not alter the production

term for the total SGS energy, it may not necessarily mean that the removal of the
−∆

2
(SikΩkj +SjkΩki)/12 term does not have any influence on the temporal evolution

of the turbulence field, since the −∆
2
(SikΩkj + SjkΩki)/12 term alters the generation

of the SGS vorticity. Taking into account the results shown in §4, it can be suggested
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that the process of energy cascade may be enhanced or attenuated by modifying
the process for generation of the SGS vorticity due to the −∆

2
(SikΩkj + SjkΩki)/12

term. This modification can be carried out independently on the P term since the
−∆

2
(SikΩkj + SjkΩki)/12 term vanishes in the P term.

Thus, we considered the variants of the nonlinear model in which the weighting
coefficients for the −∆

2
(SikΩkj + SjkΩki)/12 term were modified. In Case II, the

−∆
2
(SikΩkj + SjkΩki)/12 term was removed from the nonlinear model, and in Case

III, the −∆
2
(SikΩkj + SjkΩki)/12 term was retained, but its sign was reversed as

τij � 1
12

∆
2{(SikSkj − ΩikΩkj ) + (SikΩkj + SjkΩki)}. (5.1)

The same numbers of grid points were used for LES calculations because it was
found that when the number of grid points was smaller than 135, the numerical
result became unstable. To avoid this instability, the eddy-viscosity model had to be
added, but it was anticipated that the alignment of eigenvectors may be obscured by
adding the eddy-viscosity model because of its complete alignment with the strain-rate
tensors.

In figure 15(a), the temporal variations of the grid-scale energy, KG(=〈uiui〉/2), are
shown. For comparison, the results obtained from the filtered DNS data are included.
The values of KG as well as other statistical values obtained from Case II were
intermediate between those from Cases I and III. Therefore, in figure 15(a) and the
figures displayed in the following, the results obtained from Case II are not shown.

Figure 15(b) shows the temporal variations of the grid-scale enstrophy, 〈ωiωi〉. The
magnitude of enstrophy, and subsequently the dissipation rate, obtained from Case
III is smaller than that from Case I when t < 5.2. The difference in the magnitudes of

the enstrophy obtained from Cases I and III is large, indicating that the −∆
2
(SikΩkj +

SjkΩki)/12 term has a noticeable influence on the generation of the vorticity.

The grid-scale vortex-stretching term, ΩikΩkjSji , can be decomposed as

ΩikΩkjSji = 1
4

(
σzω

2
z + σ+ω2

+ + σ−ω2
−
)
, (5.2)

where the σzω
2
z/4 term is the component in the stretching (z-)direction, and σ+ω2

+/4
and σ−ω2

−/4 are the components in the azimuthal directions.
It was found that the profiles of the grid-scale vortex-stretching terms as well as

the SGS enstrophy generation terms, (4.2), were significantly different when different
SGS models were used. Figures 16(a) and 16(b), respectively, show the p.d.f. for the
z-component of the grid-scale vortex-stretching term, σzω

2
z , and that for the grid-scale

vortex-stretching term in the azimuthal direction, σ+ω2
+, which were obtained from

Cases I and III at t = 3.2. This result indicates that although the SGS production
terms, P , which were yielded using the different models in Cases I, II and III are the
same for the velocity fields given at one instance, the temporal developments of the
velocity and vorticity fields are not the same in these three models. It can be seen in
figures 16(a) and 16(b) that the amplitudes of the grid-scale vortex-stretching terms
obtained from Case III are markedly smaller than those obtained from Case I.

To elucidate the implication of this difference in the magnitudes of the vortex-
stretching terms, we analysed the difference in the properties of turbulent vortical
structures generated in Cases I and III. It was shown in Horiuti (2001) and Horiuti
et al. (2003) that the vortex tubes are frequently generated along the vortex sheet as
follows. At certain locations along the flat sheet, compression of the vorticity in the
stretching (z-) direction takes place. The occurrence of this compression is discernible
in figure 16(a), in which the distribution of the p.d.f. for the σzω

2
z term shows large
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Figure 15. Temporal variations of turbulence statistics, which were obtained from Cases I and
III and the filtered DNS data: (a) the grid-scale energy, KG, and (b) the grid-scale enstrophy.
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negative values (Horiuti 2000). In place of the compression and reduction of the
vorticity in the z-direction, the azimuthal vorticity in the + direction grows since the
σ+ω2

+ term is predominantly positive, as can be seen in figure 16(b). This growth is
concentrated along the sheet, and the azimuthal vorticity gradually accumulates to
form the vortex tube through a focusing process. Then, the flat sheet folds around
this concentrated vortex tube, forming the spiral vortex sheet emanating from the
tube core. Thus, for this process of transformation of the flat sheet into the vortex
tube, the grid-scale vortex-stretching terms, in particular, the negative σzω

2
z term and

positive σ+ω2
+ term, play critical roles. We note that this process is different from the

focusing of vorticity considered by Neu (1984), in which the assumed direction of
vorticity for the tube was always the z-direction.

The reason for the appearance of the alignment configuration in the flat-sheet
region shown in figure 9 is not known. Its analysis will be left for future work, but
we note that the joint p.d.f. shown in figure 8 exhibits broader peaks with lower
magnitudes. We consider that this broad p.d.f. was generated because the flat sheet
is unstable against small disturbances, and tends to be transformed into the vortex
tube.

Because the amplitudes of vorticity and strain were comparable and large along the
flat sheet, during this process of focusing, the generation of intense vorticity and strain
and a subsequent energy cascade took place along the flat sheet (Vincent & Meneguzzi
1994; Horiuti 2001). Because a significant reduction of the amplitude of the grid-scale
vortex-stretching terms takes place in Case III, the occurrence of transformation
of the flat sheet into the vortex tube and subsequent turbulence generation were
markedly more suppressed in Case III than in Case I.

Figure 17(a) shows the distribution of the p.d.f.s for the second-order invariant of
the grid-scale velocity gradient, Q(= −(SikSki + ΩikΩki)/2). It can be seen that the
amplitude of Q obtained from Case III is smaller than that from Case I. A marked
reduction of positive Q in Case III indicates that formation of the vorticity-dominant
region, i.e. the vortex tube, occurs more rarely in Case III than in Case I, and the
circulation around the tube obtained in Case III is weaker than that obtained in
Case I. This result can be seen clearly in figure 18, which displays the isosurfaces for
Q obtained from Cases I (figure 18a) and III (figure 18b) at t = 4.8. Tube structures
which were generated in Case III are distributed more sparsely than in Case I, and
the length of the vortex tubes observed in Case III is generally shorter than that
observed in Case I.

As discussed in the previous section, the flat sheet can be identified using
the eigenvalue of the −∆

2
(SikΩkj + SjkΩki)/12 term, [−∆

2
(SikΩkj + SjkΩki)/12]+ .

Figure 17(b) shows the distribution of the p.d.f. for the eigenvalue, [−∆
2
(SikΩkj +

SjkΩki)/12]+ , obtained from Cases I and III. The value of [−∆
2
(SikΩkj+SjkΩki)/12]+

is larger in Case III than in Case I, which indicates that the flat sheets are
actually generated in Case III, and the generation is more abundant than in
Case I. Figures 19(a) and 19(b), respectively, show the isosurfaces for the eigenvalue,
[−∆

2
(SikΩkj + SjkΩki)/12]+ , obtained from Cases I and III at t = 4.8. These figures

show that formation of the sheet-like structure in Case III occurs more frequently
than in Case I, but its transformation into the tube is suppressed.

It was found in Case I that the production term, P , and the SGS enstrophy
generation term, Pω, due to the −∆

2
(SikΩkj + SjkΩki)/12 term (equation (4.2) with

τij =−∆
2
(SikΩkj + SjkΩki)/12 ), were positively correlated (ρ ≈ 0.68), and the value

of the Pω term was skewed to positive value when P > 0, and to negative value when
P < 0 (figure not shown), implying that the SGS enstrophy is generated in association
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(a) (b)

Figure 18. Isosurfaces of Q at t = 4.8: (a) Case I, and (b) Case III (isosurface level is 120
for both figures). The entire computational domain is shown.

(a) (b)

Figure 19. Isosurfaces of the eigenvalue of the −∆
2
(SikΩkj + SjkΩki)/12 term,

[−∆
2
(SikΩkj + SjkΩki)/12]+ , at t = 4.8: (a) Case I, and (b) Case III (isosurface level is

0.2 for both figures). The entire computational domain is shown.

with the forward scatter of the grid-scale energy, and the grid-scale enstrophy is
generated reversely from the SGS with the backward scatter of the SGS energy into
the grid scale. This result is consistent with that obtained in the a priori assessment
shown in § 4. Contrary to Case I, P and Pω were negatively correlated (ρ ≈ −0.25)
in Case III (figure not shown). Therefore, in Case III, the direction of the energy
cascade was inconsistent with the direction of the SGS enstrophy cascade, i.e. the SGS
enstrophy was inversely cascaded to the grid scale even when the grid-scale energy
was forwardly cascaded into the SGS. Therefore, the process for energy generation
was disrupted by the −∆

2
(SikΩkj + SjkΩki)/12 term in Case III, which occurred
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owing to the suppression of the occurrence of the sheet-tube transformation process
in Case III.

The SGS enstrophy generation term, Pω (equation (4.2)), can be written as the inner
product of the vorticity vector, ω, with the SGS vortex-stretching vector, WSGS

i , the ith
component of which is W SGS

i (= εilm(∂2τmj/∂xl/∂xj )). When ω and WSGS
i are projected

onto the basis of the strain-rate eigenvectors, e+, e−, ez, Pω can be decomposed as

Pω = ωzW
SGS
z + ω+W SGS

+ + ω−W SGS
− . (5.3)

Figure 20 shows the p.d.f.s for the z-component of this decomposed Pω term, ωzW
SGS
z ,

due to the −∆
2
(SikΩkj +SjkΩki)/12 term, in which τij was set equal to −∆

2
(SikΩkj +

SjkΩki)/12 . Figures 20(a) and 20(b) are from Cases I and III, respectively. The p.d.f.s
were decomposed into those in the curved-sheet, flat-sheet and tube-core regions. In
Case I, the SGS enstrophy was backwardly transferred into the grid scale selectively
in the tube core region, while it was forwardly transferred into the SGS on average in
the other two regions, indicating that the role of the −∆

2
(SikΩkj + SjkΩki)/12 term

is to enhance the generation of the core region of the vortex tube. In Case III, the
SGS enstrophy was backwardly transferred into the grid scale in all three regions, but
the most intense backward transfer occurred in the flat-sheet region, indicating that
the grid-scale vorticity in the stretching (z-)direction is strengthened in the flat-sheet

region. As a result, in Case III, the −∆
2
(SikΩkj + SjkΩki)/12 term tends to disrupt

the transformation of the flat sheet into the vortex tube by snapping the sheet back to
the original flat shape. We note that the distributions for p.d.f.s for the z-component
of the Pω term due to the ∆

2
(SikSkj −ΩikΩkj )/12 term were skewed to positive values

in both Cases I and III (figure not shown).
The results obtained from Case I shown above were close to those obtained from

the filtered DNS data, indicating that the original nonlinear model works best, and an

improper treatment of the −∆
2
(SikΩkj + SjkΩki)/12 term yields incorrect results for

LES of the Newtonian fluids. We note, however, that disruption of the energy cascade
and the subsequent reduction of formation of tube structures observed in Case III
is similar to the phenomenon of the drag reduction by dilute polymer additives (e.g.
Sureshkumar, Beris & Handel 1997). The relationship between the variant of the
nonlinear model which was used in Case III and the Oldroyd constitutive equation
which provides a fair representation of a viscoelastic fluid (Oldroyd 1950) is reported
in Horiuti et al. (2003).

6. Conclusions
We have studied alignment of the eigenvectors for the strain-rate tensor and the

subgrid-scale (SGS) stress tensor in large-eddy simulation (LES). In the a priori
assessment, their alignment was investigated using the direct numerical simulation
(DNS) data for incompressible homogeneous isotropic turbulence. By applying the
filtering operation to the DNS data, the exact SGS stress tensor and strain-rate tensor
were derived.

We reordered the eigenvalues according to the degree of alignment of the
corresponding eigenvectors with the vorticity vector. As stated in the previous reports
of Tao, Katz & Meneveau (2000, 2002), the eigenvectors of the strain-rate and SGS
stress tensors were seen to be strongly non-aligned. The most probable alignment
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configuration determined in the present study was similar to that obtained in Tao
et al. (2002), but the angle which the non-aligned eigenvectors form was ≈ 42◦, which
is larger than ≈ 34◦ reported in Tao et al. (2000) and ≈ 32◦ in Tao et al. (2002).
Using the reordering of the eigenvalues, the appearance of bimodal behaviour of the
alignment configuration pointed out in Tao et al. (2002) was eliminated.

The specific term which is primarily responsible for generation of the non-alignment
of the eigenvectors was identified in the decomposition of the SGS stress tensor using
the nonlinear model as the −∆

2
(SikΩkj + SjkΩki)/12 term. The angle which the

−∆
2
(SikΩkj + SjkΩki)/12 term forms with the strain-rate eigenvectors was ≈ 45◦,

while when the −∆
2
(SikΩkj + SjkΩki)/12 term was removed from the SGS stress

tensor, the eigenvector for the remainder was parallel to the strain-rate eigenvector.
As in Tao et al. (2002), the alignment trends were affected substantially by sampling

conditions based on the magnitudes of the SGS production term, strain rate and
vorticity. In the present study, conditional sampling was carried out based on
the relative dominance of strain and vorticity. The entire region was divided into
three regions, namely, the strain-dominated region (curved sheet), vorticity-dominated
region (tube core) and the region in which the magnitudes of strain and vorticity are
comparable and large (flat sheet) (Horiuti 2001).

The effect of the identified term on the alignment was largest in the flat-sheet region.
As a result, the most probable alignment configuration in the flat-sheet region was
different from those in the curved-sheet and tube-core regions. The preferred relative
orientation of the strain-rate and SGS stress eigenvectors was dependent on the
degree of resolution of the flat-sheet region yielded using the LES mesh. Although its
occurrence was infrequent, an additional alignment configuration in which all strain-
rate and stress eigenvectors were aligned was observed in the curved-sheet region
since this region was least affected by the identified term.

Interchange of the alignment between the strain-rate and stress eigenvectors took
place when the SGS energy was backwardly transferred to the grid scale. The
alignment configuration was different from that in which the forward scatter of
the grid-scale energy into the SGS took place, and the alignment angle was increased
to ≈ 48◦. This interchange of the alignment cannot be represented using the SGS
eddy-viscosity model.

It was shown that the identified term makes no contribution to the production
term for the total SGS energy, but this term is relevant for the generation of the SGS
enstrophy, which occurred during the process of the formation of the vortex tube
along the flat sheet through compression of the flat sheet. The effect of the identified
term on the enstrophy generation was investigated in the a posteriori assessment by
modifying the coefficient of the −∆

2
(SikΩkj +SjkΩki)/12 term. When the sign for the

coefficient of the −∆
2
(SikΩkj + SjkΩki)/12 term was reversed, the transformation of

the flat sheet into the vortex tube was markedly disrupted, and the original nonlinear
model yielded the result which is in the closest agreement with the DNS data. A proper
treatment of the −∆

2
(SikΩkj + SjkΩki)/12 term is indispensable for an accurate SGS

modelling.
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Appendix. General form of the nonlinear model
The nonlinear model has been used for the closures of the Reynolds stresses in

the Reynolds averaged turbulence modelling. As was shown in Speziale (1991), the
nonlinear model (equation (3.1)) can be written in a general form as

τij � α1l
2SikSkj + α2l

2ΩikΩkj + α3l
2(SikΩkj + SjkΩki), (A 1)

where α1, α2, α3 are constants, and l denotes the length scale. In Speziale (1987), the
constants were optimized as

τij � α1l
2SikSkj − α1l

2(SikΩkj + SjkΩki), (A 2)

in which the ΩikΩkj term was removed by invoking the constraint of the indifference
of the stress tensor in a frame of reference undergoing rotation. This constraint may
not be applicable to LES because the cutoff of the SGS is not sufficiently small so
that the motion of the SGS is unaffected by rotation (Speziale 1985). α1 was set equal
to a positive value.

In Kosović (1997), the nonlinear model as

τij � −C1l
2SikSkj − C2l

2(SikΩkj + SjkΩki), (A 3)

was used for LES of the turbulent boundary layer, where C1, C2 are constants. The
coefficient of the SikSkj term was set to a negative value to represent the backward
scatter of the SGS energy into the grid scale. It appears, however, that when the
experimentally measured values of the normal stress components (equation (4.16)
in Kosović 1997) are used to determine the values for C1 and C2, the relationship
C2 = −C1 is yielded instead of C2 = C1 which was shown in (4.18) of Kosović (1997),
and the value for C1 should be set equal to a negative value to yield a positive value
for the τ11 term. Then, the nonlinear model which is equivalent to that in (A 2) is
derived. It should be noted that both in Speziale (1987) and Kosović (1997), the
coefficient for the (SikΩkj + SjkΩki) term was negative, since C2 was set to a positive
value. In all studies cited in Speziale (1991) which dealt with the nonlinear model, the
coefficient for the (SikΩkj + SjkΩki) term was set to a negative value.
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